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0_ SCHEDULING JOB SHOPS WITH DELAYS

S Sheldon X. C. Lou, Garrett Van Ryzin, and Stanley B. Gershvin

Abstract

In this paper, the presence of delay in a job shop is addressed. We show that
delay is an important consideration in many manufacturing systems that are
modeled as continuous flow processes. A scheduling policy for a job shop with
delays is then derived using theoretical arguments and heuristics.
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SCHEDULING JOB SHOPS WITH DELAYS.

Sheldon X.C. Lou
Garrett Van Ryzin

Stanley B. Gershwin

Massachusetts Institute of Technology

Abstract The actual loading of individual parts into
machines is left to low level controllers which

In this paper, the presence of delay in a job work at shorter time scale. The low level deals
shop is addressed. We show that delay is an only with single work stations which have far
important consideration in many manufactur- fewer machines than the whole job shop. The
ing systems that are modeled as continuous flow low level attempts to fulfill the production goal
processes. A scheduling policy for a job shop determined by the high level controller. In
with delays is then derived using theoretical ar- this way, the two level controller can avoid the
guments and heuristics, formidable computation requirements encoun-

terd in traditional approaches. Further, it dy-
namically adjusts-the production-to-cope with

1 INTRODUCTION real-time events.
While the two-level, continuous flow model

It is well known that the optimal solution of does simplify the job shop scheduling problem,
the job shop scheduling problem is, in general, it comes with a hidden cost, namely that the dif-
NP-hard 121. Except for a few problems un- ferential equations representing the system must
der very specific conditions, no computationally often include delay. To see this, notice that any

tractable solution for optimization can be found, work station that typically processes many parts
Due to this formidable computational complex- at a time (i.e. where the number of total parts in

ity, which necessitates the use of static, over- processes is much greater than 1) will have av-

simplified models, traditional job shop schedul- erage interarrival times that are much less than
ing approaches have not proven satisfactory in the processing time for a single part. For such a

practice. system, the time parts spend in the system can-

The approach proposed in [1], which in turn not be ignored and thus delay must be explicitly

is a natural extension of [3], makes use of a hier- included in the formulation.
archical control structure to remedy these prob- In this paper, which is a summary of the work

lems. A high level controller, similar to what to appear in [8], we analyze the high level con-
described in (31, works at long time scales and troller for systems with delay. In Section 2 we
deals only with work stations (work centers). It look at some examples of manufacturing systems
treats the production process as a continuous with delay and show that a rather large class
material flow. Its objective is to control the flow of manufacturing systems require delay formu-
over a long time horizon so that the demand is lations. In Section 3 we then show that a delay
satisfied as closely as possible and inventories system can be approximated by a system of first
are kept low, while keeping the system within order differential equations without delay. We

I production rate capacity constraints. use the re.:;!ts of [6] and let our approximation

To appear in the Proceedings of the 1987 IEEE International
Conference on Robotics and Automation, Raleigh, North Carolina,
March 31 - April 2, 1987
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Figure 1: A single work station with delay

get arbitrarily good to arrive at a solution for the Figure 2: A two stage system

optimal control. Due to the difficulty of com-
puting the optimal value function, we next ex- Unfortunately, delay cannot always be han-
plore a suboptimal strategy based on quadratic dled so simply. For example, consider the simple
approximations to the value function. Finally, two stage system depicted in Fig. 2.
conclusions are presented in Section 4. The system is described by

2 The Importance of Delay i(t) = u(t-ri) -u 2(t) (2)
in Manufacturing Sys- 2(t) = u(t) - d(t) (3)

tems 0 _< X,(t) (4)
0 U 1(t) < Cet) (5)

We mentioned that delay arises in manufac-
turing systems that work on many parts at 0 t 2 (t) : a 2 (t)

one time. We will now examine this phe- Suppose the constraints for ul and U2 depend on
nomenon more closely and also try to indicate some random processes (e.g. the machine state).
in what ways delay introduces difficulties into We must determine ut and u2 based on the
the scheduling problem present constraints yet the value of the future

Firstly, let us point out that introducing de- inventory, zi (t), depends on both the present
lay does not necessarily complicate the control u1 (t) ad the future u2 (t), the constraints on
problem. Consider, for example, a single work which we do not know.
station with delay as shown in Fig. 1. where z(t) Another example where delay makes the prob-
is the inventory in the buffer, r is the delay (pro- lem more complex is in the scheduling of a reen-
cessing time), u(t) is the loading rate, which is trant job shop. A reentrant job shop is one
bounded and the bound itself is a random vari- where parts visit the same work station several
able ([31), d(t) is the demand rate, which is as- times [71. A simple reentrant job shop is shown
sumed to be deterministic and known. The dy- in Fig. 3.
namics of this system can be modeled as New parts are processed by the work station

i(t) = u(t - r) - d(t) (1) then go back to the same work station for a sec-
ond process. After the second process is finished,

By simply defining i(t) = z(t + r) and d(t) - they leave the system. There are buffers after
d(t + r), both of which can be determined com- the first and second processes whose levels are
pletely at time t, we can see this problem is no denoted by z, and z2 respectively. Suppose the
different than the non-delay problem. We sim- processing time for the second process is negligi-
ply use z(t + r), rather than z(t), as the current ble. We then get the same system equations, (2)
state and solve the problem as though there were and (3). The only difference now is that the con-
no delay. straL'its on ul and U2 are also coupled, namely,

0
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Figure 3: A reentrant job shop Figure 4: Diagram of two systems

CIiUI(t) + a 2 u 2 (t) _< a(t) for some at| a2 and Let us first define new variables y,(t) to ym(t)

a. This further complicates the control. Thus, through the following equations.

a single reentrant work station with delay also
cannot be trivially handled. = ux(t) -

In the next section, we expand on the ideas m
suggested by these examples and define the con- I= i 1 (t) - Y2 (t) (8)
trol problem in exact terms. 1

0 e 3 Solution For Delay Sys- - ii(t)

tems The initial conditions are set to zero at -oo

and we assume that ul (-oo) = 0. Eq. (8) de-
To demonstrate our solution technique more fines a cascade of m first order systems with

clearly, we fist investigate the simple problem time constant -L. Its input and output are
described in (2) to (6). The technique, however, ul(t) and ym(t) respectively. As a motivation
is extendible to more complex systems. for using (8), note that its transfer function

The objective functional is is 1/(1 + sr/)m which yields the well known

limit e- ", the transfer function of a delay r, as

min fg(X, X2)dt (7) M efin.
Ifien(a) f iow define

here fl(a) is a polyhedron defined by (5) and (6)
and g(-) is some function of zI and z2. Without j1 (I) = Ym(t) - U2( ) (9)
delay, this is the same formulation as in [3]. i2(t) - U2(t)-d(t) (10)

At time t, the parts in the first process that
were loaded between t - rl and t will contribute Combine (8)-(10), we obtain a new system.
to the future inventory and, therefore, should The diagrams of this system or the original sys-

become part of the current state. Unfortunately, tem defined by (2) and (3) can be drawn as in
the problem then becomes an infinite dimen- Fig. 4.

sional one. The only difference between the system de-

In order to overcome this difficulty we approx- fined by (2) and (3) and the system defined by
imate the past u2 by a finite dimensional first (8). (10) is the first box Ki(s). For the first

order system. We then let the approximation system, it is a delay element with delay r. For

become better and better so that it approaches the second system, it is a linear system defined

the original system. by (3). If we can show that for the same u1 , u;

I. ll~lll ; N6l
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Using Lemma 1, we see that the output of the
system defined by (8)-(10) approaches the out-
put of the system defined by (2) and (3). There-

U K 81 fore, if ul is optimal for the first system, it will
also be optimal for the second one.

We will now consider the optimal control
for the system defined by (8)-(10). Define

K 2  2 Z2 = jzi- 2yj ... y.]', u = [u, uL]'. This
system can be written in a compact form as

= Ax + Bu + Cd (11)
Figure 5: Compare two integrals Using the same approach as in [3], it can be

shown that the optimal control u for the problem
and d, the output of the first system approaches defined by (11) and the constraints (4)-(6) can
the output of the second one, then we can es be obtained by solving
tablish an equivalence between the two systems.
By superpositiun, it is sufficient to show that rin V,"(x, ,)Bu (12)
the integral of y (t) approaches the integral of ()

ul (t - r) as m goes to infinity. Eq. (12) can be rewritten as
To show this result, we compare the two sys-

tems shown in Fig. 5. In Fig. 5, K 1 (s) is the m. I + -LUL (13)
system defined by (8) and K 2 (j) is a pure delay UV2(a) 1 8.Z z 2  aYu

of r. We will prove that z, (t) approaches 22 (t)
uniformly in t as m - oo. First we need the Where J (z, a) is the optimal cost to go. Unfor-
following lemma which is similar to [61. tunately, J" remains unknown and is, even for

simple problems, difficult to compute. There-
Lemma 1 If u(t) i differentiable with Ii,(t)J < fore, we seek an approximation for J'. Ex-
K for all t e (-co, +oo), then perience ([41,11) shows that satisfactory results

can be obtained with relatively crude approx-

lim sup 1 (t) - 32 (t)J =0 imations for J. The one we will use is in a
n tE(-o .+eo) quadratic form with coefficients that are func-

tions of a, namely,
Proof: (see [81). J* (z, a) 2! x'R(a} + S (a)z (14)

The integrals in Fig. 5 start from -cc.
Since the initial conditions are zero at -co and Then
u(-oo) equals zero, we can switch the linear op- VSJ*(Z, ) 2 R(cz)z + S() (15)
erators K1 , K 2 with the integrators, 1/s. Be-
cause u(t) is bounded, the integral of u(t) hasa Using (15) we can rewrite (13) as
bounded derivative. Combining these facts with
Lemma ., we obtain the following lemma. min m jm(z, a)uz J j2(z,a)u2 ] (16)

Lemma 2 If u(t) E LL and is bounded, then
• where

lrm sup 11(t) - Z (t)II = 0 i 2
"oo Ee pi(2WY + 1q,(Q)Z3 + P(A)

Proof. (see 1).jl(17)



Letting m go to infinity we get

r 2A, = / f.(o.,

A= f~aa)ui(t-ajda+~ 1qii(a')zj&pj(Q)
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